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A B S T R A C T

In linear models, omitting a covariate that is orthogonal to covariates in the model does not
result in biased coefficient estimation. This generally does not hold for longitudinal data, where
additional assumptions are needed to get an unbiased coefficient estimation in addition to the
orthogonality between omitted longitudinal covariates and longitudinal covariates in the model.
We propose methods to mitigate the omitted variable bias under weaker assumptions. A two-
step estimation procedure is proposed to infer the asynchronous longitudinal covariates when
such covariates are observed. For mixed synchronous and asynchronous longitudinal covariates,
we get a parametric convergence rate for the coefficient estimation of the synchronous
longitudinal covariates by the two-step method. Extensive simulation studies provide numerical
support for the theoretical findings. We illustrate the performance of our method on a dataset
from the Alzheimer’s Disease Neuroimaging Initiative study.

. Introduction

In linear models, the Frisch–Waugh–Lovell (FWL) theorem states the equivalence of the coefficients from the full and partial
egression. Specifically, using projection matrices to make the explanatory variables orthogonal to each other will lead to the same
esults as running the regression with all non-orthogonal explanators included (Ding, 2021; Frisch and Waugh, 1933; Lovell, 1963,
008). In particular, if we omit a variable orthogonal to variables in the model, we get unbiased regression coefficient estimation.
ecently, this idea has been used to obtain causal treatment effect estimation for longitudinal data (Bates et al., 2022). Do similar
esults hold in longitudinal studies with time-dependent covariates? How do we get unbiased regression coefficient estimation
ith omitted longitudinal covariate? Furthermore, what if the omitted longitudinal covariate is asynchronous with the longitudinal

esponse and other longitudinal covariates in the model?
Asynchronous longitudinal data refer to the misalignment of measurement times on two longitudinal processes within an

ndividual. Typical examples arise in analyzing electronic health records (EHR) data, where patients’ health information is collected
rom multiple sources. EHR may include data on an individual’s demographics, medication and allergies, immunization status,
aboratory test results, and billing information, among others. Due to the retrospective nature of EHR, the measurement times are
ollected at each clinical encounter, which can be irregular and sparse across patients and asynchronous within patients. Another
xample comes from the Alzheimer’s Disease Neuroimaging Initiative study (ADNI), where cognitive decline metrics, such as Mini-
ental State Examination (MMSE) score, are misaligned with medical imaging measurements, such as log hazard of fractional
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Fig. 1. Examples of individual observations.

anisotropy (FA), which reflects fiber density, axonal diameter, and myelination in white matter, within an individual. Typical
measurement times of a few patients in this dataset are plotted in Fig. 1. We can see that each patient has a different number
of measurements of MMSE and FA. Furthermore, the measurement times of MMSE and FA are mismatched.

For asynchronous longitudinal data, Xiong and Dubin (2010) employed a binning approach to synchronize covariates and
response measurements to use existing methods for classic longitudinal data analysis. Sentürk et al. (2013) explicitly addressed
the asynchronous structure for generalized varying-coefficient models with one covariate yet did not provide any theoretical
justification. Cao et al. (2015) proposed a non-parametric weighting approach for generalized linear models with asynchronous
longitudinal data and rigorously established inferential strategies. This was extended to a more general setup in Cao et al. (2016)
and a partial linear model in Chen and Cao (2017). Recently, Li et al. (2022) studied temporally asynchronous functional imaging
data, and Sun et al. (2021) examined informative measurement times for asynchronous longitudinal data. These approaches assume
that all asynchronous longitudinal covariates have the same measurement times, which are asynchronous with the longitudinal
response. The problem of mixed synchronous and asynchronous longitudinal covariates has not been addressed.

In this paper, we propose statistical methods for analyzing mixed synchronous and asynchronous longitudinal covariates. The
longitudinal covariates have two sets, one set is measured synchronously with the longitudinal response, and another set is measured
asynchronously with the longitudinal response. Suppose we are interested in inference on the synchronous longitudinal covariates
and treat the asynchronous longitudinal covariates as a nuisance. Unlike classic linear models, unbiased regression coefficient
estimation of the synchronous longitudinal covariates usually cannot be obtained when omitting the asynchronous longitudinal
covariates, even if they are uncorrelated unless the omitted asynchronous longitudinal covariates have constant expectations over
time. Ignoring this fact and only fitting synchronous longitudinal covariates with the longitudinal response may incur omitted
variable bias.

To mitigate such bias, we can fit synchronous and asynchronous longitudinal covariates simultaneously like that in Cao et al.
(2015). For synchronous longitudinal covariates, this one-step method implements unnecessary smoothing, which slows down the
rate of convergence of the regression coefficient. To improve efficiency, we propose a two-step method. In the first step, we
either fit a partial linear model of the synchronous longitudinal covariates to the longitudinal response or a linear model with
centered synchronous longitudinal covariates and centered longitudinal response, omitting the asynchronous longitudinal covariates.
Intuitively, we either absorb the omitted longitudinal covariates through the non-parametric intercept in the partial linear model
or eliminate them through centering. We show that a parametric rate of convergence can be obtained for the regression coefficient
estimation of synchronous longitudinal covariates. In the second step, residuals from the first step are fitted with the asynchronous
longitudinal covariates by kernel weighting. It is established that the resulting estimator is consistent, asymptotically normal, and
has the same convergence rates as that in Cao et al. (2015).

To analyze longitudinal data with partial linear models, Fan and Li (2004) developed statistical estimation and inference under
2

the corrected specified model, whereas we are working with a misspecified model. Qian and Wang (2017) proposed a centering
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approach for the analysis of classic longitudinal data assuming the model is correctly specified while we are dealing with omitted
variable bias and model misspecification. Moreover, the analysis of mixed synchronous and asynchronous longitudinal covariates
and omitted variable analysis for longitudinal data have not been studied before.

The rest of the paper is organized as follows. In Section 2, we elaborate on conditions for consistency of the naïve estimation of
mitting the asynchronous longitudinal covariates. We then propose a partial linear model and a centering approach for consistent
stimation of the regression coefficient of the synchronous longitudinal covariate and study the sampling properties of the procedure.
n Section 3, we consider a two-step estimator of the regression coefficient of the asynchronous longitudinal covariate and derive
ts asymptotic properties and associated inferences. In addition, we derive methods and theories for analyzing synchronous and
synchronous longitudinal covariates simultaneously. In Section 4, we conduct Monte Carlo simulation studies to examine the finite
ample performance of the proposed methods. Analysis of the dataset from an ADNI study illustrates the methodology in Section 5.
oncluding remarks are given in Section 6. All proofs are relegated in the Supplementary Material.

. Estimation and inference with omitted longitudinal covariates

.1. A Naïve approach

We first look at the case where the mis-specified model is naïvely analyzed using methods from classic longitudinal data analysis
mitting the asynchronous longitudinal covariates. Assume the true model is

𝑌 (𝑡) = 𝛼 +𝑋(𝑡)𝑇 𝛽 +𝑍(𝑡)𝑇 𝛾 + 𝜖(𝑡), (2.1)

where 𝑌 (𝑡) is the longitudinal outcome, 𝛼 is the intercept, 𝑋(𝑡) ∈ R𝑝 is the observed longitudinal covariates measured synchronously
with 𝑌 (𝑡), 𝑍(𝑡) ∈ R𝑞 is the omitted longitudinal covariates, which may be measured asynchronously with 𝑌 (𝑡) and 𝑋(𝑡), 𝛽 ∈ R𝑝 and
𝛾 ∈ R𝑞 are unknown parameters to be estimated, and 𝜖(𝑡) is a mean 0 stochastic process, uncorrelated with 𝑋(𝑡) and 𝑍(𝑡). This is

marginal model, which specifies that the conditional mean of the longitudinal response only depends on the current value of the
ongitudinal covariates. There is no lagged effect of the longitudinal covariates. In this subsection, our interest is on inference about
he regression coefficient 𝛽. Since 𝑍(𝑡) is omitted, in practice, we fit the misspecified model

𝑌 (𝑡) = 𝛼⋄ +𝑋(𝑡)𝑇 𝛽⋄ + 𝜖⋄(𝑡), (2.2)

here 𝛼⋄ is the intercept, 𝛽⋄ ∈ R𝑝 is the regression coefficient, and 𝜖⋄(𝑡) is a mean 0 stochastic process, uncorrelated with 𝛼⋄ and
(𝑡). This naïve practice can negatively impact estimation of 𝛽 in the true model (2.1).

Suppose we have a random sample of 𝑛 subjects and for the 𝑖th subject, there are 𝑀𝑖 longitudinal observations. Denote 𝑌𝑖𝑗 ∈ R
nd 𝑋𝑖𝑗 ∈ R𝑝 as the synchronous longitudinal response and covariates observed at times 𝑡𝑖𝑗 , 𝑖 = 1,… , 𝑛; 𝑗 = 1,… ,𝑀𝑖. We minimize
he least square error under model (2.2)

𝑛
∑

𝑖=1

𝑀𝑖
∑

𝑗=1
(𝑌𝑖𝑗 − 𝛼⋄ −𝑋𝑇

𝑖𝑗𝛽
⋄)2.

e have

𝛽𝑛 =
(

𝑛
∑

𝑖=1

𝑀𝑖
∑

𝑗=1
𝑋𝑖𝑗𝑋

𝑇
𝑖𝑗

)−1 𝑛
∑

𝑖=1

𝑀𝑖
∑

𝑗=1
𝑋𝑖𝑗 (𝑌𝑖𝑗 − 𝛼⋄). (2.3)

aking the expectation, we have

𝐸(𝛽𝑛) = 𝐸

{

(

𝑛
∑

𝑖=1

𝑀𝑖
∑

𝑗=1
𝑋𝑖𝑗𝑋

𝑇
𝑖𝑗

)−1 𝑛
∑

𝑖=1

𝑀𝑖
∑

𝑗=1
𝑋𝑖𝑗 (𝑌𝑖𝑗 − 𝛼⋄)

}

= 𝛽 + 𝐸

{

(

𝑛
∑

𝑖=1

𝑀𝑖
∑

𝑗=1
𝑋𝑖𝑗𝑋

𝑇
𝑖𝑗

)−1 𝑛
∑

𝑖=1

𝑀𝑖
∑

𝑗=1
𝑋𝑖𝑗 (𝛼 +𝑍𝑇

𝑖𝑗 𝛾 + 𝜖𝑖𝑗 − 𝛼⋄)

}

= 𝛽 + 𝐸
(

(

𝑛
∑

𝑖=1

𝑀𝑖
∑

𝑗=1
𝑋𝑖𝑗𝑋

𝑇
𝑖𝑗

)−1 𝑛
∑

𝑖=1

𝑀𝑖
∑

𝑗=1
𝑋𝑖𝑗

[

𝛼 + 𝐸(𝑍𝑖𝑗 )𝑇 𝛾 − 𝛼⋄

+{𝑍𝑖𝑗 − 𝐸(𝑍𝑖𝑗 )}𝑇 𝛾
]

)

= 𝛽 + 𝐸

[

(

𝑛
∑

𝑖=1

𝑀𝑖
∑

𝑗=1
𝑋𝑖𝑗𝑋

𝑇
𝑖𝑗

)−1 𝑛
∑

𝑖=1

𝑀𝑖
∑

𝑗=1
𝑋𝑖𝑗

{

𝛼 + 𝐸(𝑍𝑖𝑗 )𝑇 𝛾 − 𝛼⋄
}

]

+ 𝐸

[

(

𝑛
∑

𝑖=1

𝑀𝑖
∑

𝑗=1
𝑋𝑖𝑗𝑋

𝑇
𝑖𝑗

)−1 𝑛
∑

𝑖=1

𝑀𝑖
∑

𝑗=1
𝑋𝑖𝑗

{

𝑍𝑖𝑗 − 𝐸(𝑍𝑖𝑗 )
}𝑇 𝛾

]

= 𝛽 + 𝐼 + 𝐼𝐼. (2.4)
3
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In (2.4), 𝐼 and 𝐼𝐼 in general do not vanish and 𝛽 from (2.3) is biased. We next show that the naïve approach can still work under
the following conditions.

(C1) 𝐸{𝑍(𝑡)} is constant ∀𝑡.
(C2) 𝑋(𝑡) and 𝑍(𝑡) are uncorrelated ∀𝑡.

Theorem 1. Under (C1) and (C2), estimation of 𝛽 in (2.1) under the mis-specified model (2.2) is unbiased.

We remark that the intercept in (2.1) cannot be consistently estimated under the misspecified model (2.2). The proof of Theorem 1
s relegated in the Supplementary Material. Furthermore, we corroborate Theorem 1 empirically by simulation studies in Section 4.

.2. A partial linear model approach

For general cases, instead of working with (2.2), we propose to use a partial linear model

𝑌 (𝑡) = 𝛼(𝑡) +𝑋(𝑡)𝑇 𝛽𝑝 + 𝜖𝑝(𝑡), (2.5)

here 𝑌 (𝑡) is the longitudinal response, 𝛼(𝑡) is the non-parametric intercept, 𝑋(𝑡) ∈ R𝑝 is the longitudinal covariate, 𝛽𝑝 ∈ R𝑝 is
he regression coefficient and 𝜖𝑝(𝑡) is a mean 0 stochastic process, uncorrelated with 𝛼(𝑡) and 𝑋(𝑡). As shown below, fitting the
isspecified model (2.5) permits unbiased estimation of 𝛽 in (2.1) under weaker conditions than those for the naïve estimator in

ection 2.1.
We first define some notations. For the 𝑖th subject, we observe longitudinal response and covariates {𝑌𝑖(𝑇𝑖𝑗 ), 𝑋𝑖(𝑇𝑖𝑗 )}, 𝑗 = 1,… ,𝑀𝑖,

here 𝑇𝑖𝑗 , 𝑗 = 1,… ,𝑀𝑖, are the observation times for the longitudinal measurements, where 𝑀𝑖 is finite with probability 1. We
se a counting process to represent the observation times. Specifically, 𝑁𝑖(𝑡) =

∑𝑀𝑖
𝑗=1 𝐼(𝑇𝑖𝑗 ≤ 𝑡) counts the number of longitudinal

bservations up to 𝑡 (Cao et al., 2015; Lin and Ying, 2001). We use 𝑡𝑖𝑗 to denote the realized value of 𝑇𝑖𝑗 .
For the estimation of 𝛼(𝑡) in (2.5), Fan and Li (2004) proposes to use local linear approximation. Specifically, for 𝑡 in a

eighborhood of 𝑡0, by Taylor expansion, we have

𝛼(𝑡) ≈ 𝛼(𝑡0) + �̇�(𝑡0)(𝑡 − 𝑡0) ∶= 𝑎0 + 𝑎1(𝑡 − 𝑡0),

here the superscript dot denotes the first-order derivative. Let 𝐾(⋅) be a kernel function and let ℎ be a bandwidth. We aim to find
�̂�0, �̂�1) minimizing

𝑛
∑

𝑖=1

𝑀𝑖
∑

𝑗=1
𝐾ℎ(𝑡𝑖𝑗 − 𝑡0){𝑌𝑖(𝑡𝑖𝑗 ) − 𝑎0 − 𝑎1(𝑡𝑖𝑗 − 𝑡0) −𝑋𝑖(𝑡𝑖𝑗 )𝑇 𝛽𝑝}2, (2.6)

here 𝐾ℎ(⋅) = ℎ−1𝐾(⋅∕ℎ). The motivation for this is that we want to write �̂�0 as a function of 𝛽𝑝. This is different from the GEE with
orking independence covariance matrix and the inverse of 𝐾ℎ(𝑡𝑖𝑗 − 𝑡0) as the variance function, where the interest lies in estimating
0, 𝑎1 and 𝛽𝑝 jointly (Liang and Zeger, 1986).

From (2.6), we have

�̂�0 =
∑𝑛

𝑖=1 ∫ 𝐾ℎ(𝑡 − 𝑡0){𝑞2(𝑡 − 𝑡0) − (𝑡 − 𝑡0)𝑞1(𝑡 − 𝑡0)}{𝑌𝑖(𝑡) −𝑋𝑖(𝑡)𝑇 𝛽𝑝}𝑑𝑁𝑖(𝑡)
∑𝑛

𝑖=1 ∫ 𝐾ℎ(𝑡 − 𝑡0){𝑞2(𝑡 − 𝑡0) − (𝑡 − 𝑡0)𝑞1(𝑡 − 𝑡0)}𝑑𝑁𝑖(𝑡)
, (2.7)

here

𝑞𝑙(𝑡 − 𝑡0) =
𝑛
∑

𝑖=1
∫ 𝐾ℎ(𝑡 − 𝑡0)(𝑡 − 𝑡0)𝑙𝑑𝑁𝑖(𝑡), 𝑙 = 1, 2.

Note that �̂�0 is linear in 𝑌 (𝑡) − 𝑋(𝑡)𝑇 𝛽𝑝, so we can write the estimator of 𝛽𝑝 in a closed form. This is accomplished by
concatenating the longitudinal measurements from the first subject to the last subject into a long vector. Specifically, denote
𝑚 =

∑𝑛
𝑖=1 𝑀𝑖, 𝑇 ∗ = (𝑇 ∗

1 ,… , 𝑇 ∗
𝑚) ∶= (𝑡11,… , 𝑡𝑛𝑀𝑛

)𝑇 . We concatenate other functions of 𝑇 ∗. Denote 𝜖∗ ∶= 𝜖(𝑇 ∗) = {𝜖(𝑇 ∗
1 ),… , 𝜖(𝑇 ∗

𝑚)}
𝑇 ,

∗ ∶= 𝛼(𝑇 ∗) = {𝛼(𝑇 ∗
1 ),… , 𝛼(𝑇 ∗

𝑚)}
𝑇 , 𝑋∗ = {𝑋∗

1 ,… , 𝑋∗
𝑚} ∶= {𝑋1(𝑡11),… , 𝑋𝑛(𝑡𝑛𝑀𝑛

)}𝑇 and 𝑌 ∗ = {𝑌 ∗
1 ,… , 𝑌 ∗

𝑚}
𝑇 ∶= {𝑌1(𝑡11),… , 𝑌𝑛(𝑡𝑛𝑀𝑛

)}𝑇 .
hen �̂�∗ = 𝑆(𝑌 ∗ − 𝑋∗𝛽𝑝), where 𝑌 ∗ − 𝑋∗𝛽𝑝 is an 𝑚 × 1 column vector, 𝑆 is an 𝑚 × 𝑚 symmetric matrix with the 𝑖th row and 𝑗th
olumn entry 𝑠𝑖𝑗 = 𝑤𝑖𝑗 (

∑𝑚
𝑗=1 𝑤𝑖𝑗 )−1, where 𝑤𝑖𝑗 = 𝐾ℎ(𝑇 ∗

𝑖 − 𝑇 ∗
𝑗 ){𝑞𝑖,2 − (𝑇 ∗

𝑖 − 𝑇 ∗
𝑗 )𝑞𝑖,1}, where 𝑞𝑖,𝑙 =

∑𝑚
𝑗=1 𝐾ℎ(𝑇 ∗

𝑖 − 𝑇 ∗
𝑗 )(𝑇

∗
𝑖 − 𝑇 ∗

𝑗 )
𝑙 , 𝑙 = 1, 2.

s a result, �̂�∗ is an 𝑚 × 1 column vector. Marginally, substituting �̂�∗ into

𝑌 ∗ = 𝛼∗ +𝑋∗𝛽𝑝 + 𝜖∗,

e obtain

(𝐼 − 𝑆)𝑌 ∗ = (𝐼 − 𝑆)𝑋∗𝛽𝑝 + 𝜖∗, (2.8)

here 𝐼 is the identity matrix of dimension 𝑚. By minimizing the squared error, we have

𝛽 = {𝑋∗𝑇 (𝐼 − 𝑆)𝑇 (𝐼 − 𝑆)𝑋∗}−1𝑋∗𝑇 (𝐼 − 𝑆)𝑇 (𝐼 − 𝑆)𝑌 ∗.
4

𝑝
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With 𝛽𝑝 estimated, we obtain residual vector 𝜖𝑖 for the 𝑖th subject from fitting (2.8), 𝑖 = 1,… , 𝑛. Define �̂� = diag{𝜖1𝜖𝑇1 ,… , 𝜖𝑛𝜖𝑇𝑛 },
and 𝑉 = 𝑋∗𝑇 (𝐼 − 𝑆)𝑇 �̂�(𝐼 − 𝑆)𝑋∗. The variance of 𝛽𝑝 can be estimated by V̂ar(𝛽𝑝) = 𝐷−1𝑉 𝐷−1, where 𝐷 = 𝑋∗𝑇 (𝐼 − 𝑆)𝑇 (𝐼 − 𝑆)𝑋∗.
We next show theoretical properties of 𝛽𝑝. In Fan and Li (2004), it has been shown that 𝛽𝑝 is a consistent estimator of 𝛽𝑝 in (2.5).
We shall show that 𝛽𝑝 is consistent for 𝛽 in (2.1) and derive its asymptotic distribution. We need the following assumptions.

(C3) 𝑁𝑖(𝑡) is independent of {𝑋𝑖(𝑡), 𝑍𝑖(𝑡)} for each 𝑡 and 𝐸{𝑑𝑁𝑖(𝑡)} = 𝜆(𝑡)𝑑𝑡, 𝑖 = 1,… , 𝑛. Moreover, 𝜖(𝑡) is a mean 0 process,
uncorrelated with 𝑋(𝑡) and 𝑍(𝑡).

(C4) 𝐸 ∫ {�̃�(𝑡)�̃�(𝑡)𝑇 }𝜆(𝑡)𝑑𝑡 is positive definite and bounded, where �̃�(𝑡) = 𝑋(𝑡) − 𝐸{𝑋(𝑡)}. Moreover, 𝐸{𝑋∗𝑇 (𝐼 − 𝑆)𝑇 (𝐼 − 𝑆)𝑋∗}
s positive definite.

(C5) 𝐾(⋅) is a symmetric density function satisfying ∫ 𝑧𝐾(𝑧)𝑑𝑧 = 0, ∫ 𝑧2

(𝑧)𝑑𝑧 < ∞ and ∫ 𝐾(𝑧)2𝑑𝑧 < ∞.
(C6) ℎ → 0 and 𝑛ℎ → ∞.
Condition (C3) requires that the observation and error processes are independent of the longitudinal covariate processes.

ondition (C4) ensures identifiability and the existence of 𝛽𝑝. Conditions (C5) and (C6) specify valid kernels and bandwidths.
The following theorem, established in the Supplementary Material, states the asymptotic properties of 𝛽𝑝.

heorem 2. Under (C2)–(C6), the asymptotic distribution of 𝛽𝑝 satisfies
√

𝑛(𝛽𝑝 − 𝛽0)
𝑑
→ 𝑁(0, 𝐴−1𝛴𝛾0𝐴

−1), (2.9)

here 𝛾0 is the true value of 𝛾 in (2.1),

𝐴 = 𝐸 ∫ {�̃�(𝑡)�̃�(𝑡)𝑇 }𝜆(𝑡)𝑑𝑡, and

𝛴𝛾0 = 𝐸
{

∫ �̃�(𝑡){�̃�(𝑡)𝑇 𝛾0 + 𝜖(𝑡)}𝑑𝑁(𝑡)
}⊗2

.

This result is different from that in Fan and Li (2004) as it is derived under the working model (2.5) to make inferences of
parameters in the true model (2.1).

We further make connections between the asymptotic variance of 𝛽𝑝, 𝛴 = 𝐴−1𝛴𝛾0𝐴
−1, and its estimator, 𝐷−1𝑉 𝐷−1. Specifically,

(𝐼 − 𝑆)𝑋∗ can be viewed as a realization of �̃�, and its inner product 𝐷 = 𝑋∗𝑇 (𝐼 − 𝑆)𝑇 (𝐼 − 𝑆)𝑋∗ reflects 𝐴, the integral for the
ntensity function of the counting process 𝜆(𝑡)𝑑𝑡. Additionally 𝜖𝑖 of �̂� in 𝑉 corresponds to �̃�𝑖(𝑡)𝑇 𝛾0 + 𝜖𝑖(𝑡) in 𝛴𝛾0 as both are based
n the residuals with 𝑋𝑖(𝑡) as the covariate, 𝑖 = 1,… , 𝑛.

.3. A centering approach

The partial linear model approach uses a non-parametric function to model the omitted longitudinal covariate 𝑍(𝑡) and its
ffect. A different idea is to eliminate 𝑍(𝑡) from the model by centering 𝑋(𝑡) and 𝑌 (𝑡). Specifically, we first take the unconditional
xpectation of (2.1):

𝐸{𝑌 (𝑡)} = 𝛼 + 𝐸{𝑋(𝑡)}𝑇 𝛽 + 𝐸{𝑍(𝑡)}𝑇 𝛾,

nd subtract it from (2.1):

𝐸{𝑌 (𝑡) ∣ 𝑋(𝑡), 𝑍(𝑡)} − 𝐸{𝑌 (𝑡)} =
[

𝑋(𝑡) − 𝐸{𝑋(𝑡)}
]𝑇

𝛽 +
[

𝑍(𝑡) − 𝐸{𝑍(𝑡)}
]𝑇

𝛾. (2.10)

y (C2), taking expectation conditional on 𝑋(𝑡) only, (2.10) becomes

𝐸{𝑌 (𝑡) ∣ �̃�(𝑡)} = �̃�(𝑡)𝑇 𝛽, (2.11)

here 𝑌 (𝑡) = 𝑌 (𝑡) − 𝐸{𝑌 (𝑡)}. The estimate of 𝛽 can be obtained through the usual linear model analysis. Our motivation and setup
iffer greatly from Qian and Wang (2017), where a similar centering approach is developed to analyze classic longitudinal data.

Note that in (2.11), the unknown mean processes 𝐸{𝑌 (𝑡)} and 𝐸{𝑋(𝑡)} need to be estimated. This can be achieved through the
adaraya–Watson estimator (Nadaraya, 1964; Watson, 1964). Denote 𝑚𝑌 (𝑡) = 𝐸{𝑌 (𝑡)} and 𝑚𝑋 (𝑡) = 𝐸{𝑋(𝑡)}. We have

�̂�𝑌 (𝑡0) =
∑𝑛

𝑖=1 ∫ 𝐾ℎ(𝑡 − 𝑡0)𝑌𝑖(𝑡)𝑑𝑁𝑖(𝑡)
∑𝑛

𝑖=1 ∫ 𝐾ℎ(𝑡 − 𝑡0)𝑑𝑁𝑖(𝑡)
and

�̂�𝑋 (𝑡0) =
∑𝑛

𝑖=1 ∫ 𝐾ℎ(𝑡 − 𝑡0)𝑋𝑖(𝑡)𝑑𝑁𝑖(𝑡)
∑𝑛

𝑖=1 ∫ 𝐾ℎ(𝑡 − 𝑡0)𝑑𝑁𝑖(𝑡)
,

where 𝐾ℎ(⋅) = ℎ−1𝐾(⋅∕ℎ), 𝐾(⋅) is a kernel function and ℎ is the bandwidth. Let 𝑌𝑖(𝑡) = 𝑌𝑖(𝑡) − �̂�𝑌 (𝑡) and �̂�𝑖(𝑡) = 𝑋𝑖(𝑡) − �̂�𝑋 (𝑡). The
stimating equation for 𝛽 is

𝑈 (𝛽) = 𝑛−1
𝑛
∑

∫ �̂�𝑖(𝑡){𝑌𝑖(𝑡) − �̂�𝑖(𝑡)𝑇 𝛽}𝑑𝑁𝑖(𝑡). (2.12)
5
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Solving (2.12), we obtain

𝛽𝑐 =
{

𝑛
∑

𝑖=1
∫ �̂�𝑖(𝑡)�̂�𝑖(𝑡)𝑇 𝑑𝑁𝑖(𝑡)

}−1 𝑛
∑

𝑖=1
∫ �̂�𝑖(𝑡)𝑌𝑖(𝑡)𝑑𝑁𝑖(𝑡).

We shall show that 𝛽𝑐 is a consistent estimator of the true 𝛽 in (2.1) and establish its limiting distribution. Note that

𝛽𝑐 − 𝛽0 =
{

𝑛
∑

𝑖=1
∫ �̂�𝑖(𝑡)�̂�𝑖(𝑡)𝑇 𝑑𝑁𝑖(𝑡)

}−1 𝑛
∑

𝑖=1
∫ �̂�𝑖(𝑡){𝑌𝑖(𝑡) − �̂�𝑇

𝑖 𝛽0}𝑑𝑁𝑖(𝑡).

Therefore, the variance of 𝛽𝑐 can be estimated with the sandwich formula:

V̂ar(𝛽𝑐 ) = {
𝑛
∑

𝑖=1
∫ �̂�𝑖(𝑡)�̂�𝑖(𝑡)𝑇 𝑑𝑁𝑖(𝑡)}−1

𝑛
∑

𝑖=1

[

∫ �̂�𝑖(𝑡){𝑌𝑖(𝑡) − �̂�𝑖(𝑡)𝑇 𝛽𝑐}𝑑𝑁𝑖(𝑡)
]⊗2

{
𝑛
∑

𝑖=1
∫ �̂�𝑖(𝑡)�̂�𝑖(𝑡)𝑇 𝑑𝑁𝑖(𝑡)}−1.

We need an additional smoothness assumption specified in (C7) below.
(C7) 𝐸{𝑋(𝑡)} and 𝐸{𝑌 (𝑡)} are continuous functions for any 𝑡.
The following theorem, established in the Supplementary Material, states the asymptotic properties of 𝛽𝑐 .

Theorem 3. Under (C2)–(C7), the asymptotic distribution of 𝛽𝑐 satisfies
√

𝑛(𝛽𝑐 − 𝛽0)
𝑑
→ 𝑁(0, 𝐴−1𝛴𝛾0𝐴

−1), (2.13)

where 𝐴 and 𝛴𝛾0 are the same as those in Theorem 2.

We note that 𝛽𝑝 and 𝛽𝑐 are asymptotically unbiased, obtain parametric root 𝑛 convergence rate, and have the same limiting
variance. This suggests that the newly proposed two estimators should perform similarly in practice. Simulation studies reported
in Section 4 further substantiate these theoretical findings. It is counter-intuitive that we get an efficient estimation of 𝛽0 with less
information, as information in 𝑍(𝑡) is not used. This is due to the key assumption (C2). When (C2) is violated, we propose a strategy
in Section 2.4.

The partial linear model approach and centering approach require bandwidth for smoothing. We experimented with various
values of bandwidths in the allowable range in the simulation studies, and the results are fairly robust to the choice of bandwidth.
In practice, cross-validation may be used to select bandwidth. In terms of computation, centering is faster. The trade-off is that the
partial linear model approach allows us to understand the omitted 𝑍(𝑡) through the estimated non-parametric intercept term.

2.4. A more general approach

In the previous two subsections, we showed that omitting longitudinal covariates uncorrelated with longitudinal covariates in
the model will not produce bias using the proposed methods. In general, (C2) is a strong assumption. In this section, we propose a
more general approach with relaxed assumptions.

Suppose we have three sets of covariate processes, 𝑋1(𝑡), 𝑋2(𝑡) and 𝑍(𝑡), where 𝑋1(𝑡) and 𝑋2(𝑡) are synchronous with 𝑌 (𝑡) and
(𝑡) is asynchronous with 𝑌 (𝑡). We are interested in statistical inference of the regression coefficient of 𝑋1(𝑡), adjusting for 𝑋2(𝑡)

nd 𝑍(𝑡). Examples arise in randomized clinical trials, where 𝑋1(𝑡) is treatment, 𝑋2(𝑡) is observed synchronous covariate, and 𝑍(𝑡)
s asynchronous covariate, which may not be observed in the first stage. Suppose the full model is

𝑌 (𝑡) = 𝛼 +𝑋1(𝑡)𝑇 𝛽1 +𝑋2(𝑡)𝑇 𝛽2 +𝑍(𝑡)𝑇 𝛾 + 𝜖(𝑡), (2.14)

here 𝛼 is the intercept, 𝛽1 is regression coefficient of interest, 𝛽2 and 𝛾 are nuisance parameters and 𝜖(𝑡) is a mean 0 stochastic
rocess, uncorrelated with 𝑋1(𝑡), 𝑋2(𝑡) and 𝑍(𝑡). Let 𝑎⟂𝑏 denote the projection of 𝑎 on the orthogonal complement of the space
panned by 𝑏. Without loss of generality, we assume that 𝑋2(𝑡) includes the constant 1. We have a weaker assumption.

(𝐶2∗) ∀𝑡, 𝑋1(𝑡)⟂𝑋2(𝑡) and 𝑍(𝑡)⟂𝑋2(𝑡) are uncorrelated.
Condition (𝐶2∗) is the unconfoundedness assumption. The relationship between different variables at time 𝑡 is depicted in Fig. 2.

nder this assumption, we use ideas from the FWL theorem (Frisch and Waugh, 1933; Lovell, 1963; Ding, 2021) to convert the
roblem to our set-up. Specifically, we first get 𝑋1(𝑡)⟂𝑋2(𝑡), which can be obtained through the residual from regressing 𝑋1(𝑡) on
2(𝑡). We get 𝑍(𝑡)⟂𝑋2(𝑡) by the same token. Denote 𝐻2(𝑡) = 𝐼−𝑋2(𝑡)𝑇

{

𝑋2(𝑡)𝑋2(𝑡)𝑇
}−1 𝑋2(𝑡). Multiplying 𝐻2(𝑡) to both sides of (2.14),

e get

𝐻2(𝑡)𝑌 (𝑡) = 𝐻2(𝑡)𝑋1(𝑡)𝑇 𝛽1 +𝐻2(𝑡)𝑍(𝑡)𝑇 𝛾 + 𝜖(𝑡).

y (𝐶2∗), 𝐻2(𝑡)𝑋1(𝑡)𝑇 and 𝐻2(𝑡)𝑍(𝑡)𝑇 are uncorrelated, and the proposed method would work. We can apply the method proposed
n Sections 2.2 and/or 2.3 to get an unbiased estimation of 𝛽1. Numerical support for this can be found in simulation studies in
ection 4.
6
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Fig. 2. Graphical representation of variables in model (2.14).

3. Estimation and inference of asynchronous longitudinal covariates

3.1. A two-step method

In this section, we consider the case that longitudinal covariates 𝑋(𝑡) and 𝑍(𝑡) are asynchronous and longitudinal response 𝑌 (𝑡) is
observed in alignment with 𝑋(𝑡). There is no existing literature to deal with such mixed synchronous and asynchronous longitudinal
covariates. Specifically, suppose we have a random sample of 𝑛 subjects. For subject 𝑖 = 1,… , 𝑛, 𝑁𝑖(𝑡, 𝑠) =

∑𝑀𝑖
𝑗=1

∑𝐿𝑖
𝑘=1 𝐼(𝑡𝑖𝑗 ≤ 𝑡, 𝑠𝑖𝑘 ≤ 𝑠)

ounts the number of observation times up to 𝑡 on 𝑋(⋅) and 𝑌 (⋅) and up to 𝑠 on 𝑍(⋅), where 𝑡𝑖𝑗 , 𝑗 = 1,… ,𝑀𝑖 are the observation times
f 𝑋(⋅) and 𝑌 (⋅) and 𝑠𝑖𝑘, 𝑘 = 1,… , 𝐿𝑖 are the observation times of 𝑍(⋅). Denote 𝐸{𝑑𝑁𝑖(𝑡, 𝑠)} = 𝜂(𝑡, 𝑠)𝑑𝑡𝑑𝑠, 𝑖 = 1,… , 𝑛. We propose a
wo-step approach to estimate 𝛽 and 𝛾 in (2.1).

Step 1: Regress longitudinal response 𝑌 (𝑡) on synchronous longitudinal covariate 𝑋(𝑡) to get 𝛽 and the residuals.
Step 2. Regress residuals from Step 1 on asynchronous longitudinal covariate 𝑍(𝑡) to estimate �̂�.
In Step 1, either a partial linear model approach or a centering approach can be used as they have the same asymptotic

istribution. Once 𝛽 is obtained, we compute the residual �̂�𝑖(𝑇𝑖𝑗 ) = 𝑌𝑖(𝑇𝑖𝑗 ) − 𝑋𝑖(𝑇𝑖𝑗 )𝑇 𝛽. In Step 2, to estimate 𝛾, we propose the
ollowing estimating equation (Cao et al., 2015)

𝑈𝑓 (𝛾) = 𝑛−1
𝑛
∑

𝑖=1
∬ 𝐾ℎ(𝑡 − 𝑠)𝑍𝑖(𝑠){𝑌𝑖(𝑡) −𝑍𝑖(𝑠)𝑇 𝛾 −𝑋𝑖(𝑡)𝑇 𝛽}𝑑𝑁𝑖(𝑡, 𝑠), (3.15)

here 𝐾ℎ(𝑡) = 𝐾(𝑡∕ℎ)∕ℎ,𝐾(𝑡) is a symmetric kernel function, usually taken to be the Epanechnikov kernel 𝐾(𝑡) = 0.75(1 − 𝑡2)+ and
is the bandwidth. Solving 𝑈𝑓 (𝛾) = 0, we obtain

�̂� =

{ 𝑛
∑

𝑖=1
∬ 𝐾ℎ(𝑡 − 𝑠)𝑍𝑖(𝑠)𝑍𝑖(𝑠)𝑇 𝑑𝑁𝑖(𝑡, 𝑠)

}−1

×
𝑛
∑

𝑖=1
∬ 𝐾ℎ(𝑡 − 𝑠)𝑍𝑖(𝑠){𝑌𝑖(𝑡) −𝑋𝑖(𝑡)𝑇 𝛽}𝑑𝑁𝑖(𝑡, 𝑠).

The idea of the two-step approach is intuitive. Note (2.1) can be written as 𝑌 (𝑡)−𝑋(𝑡)𝑇 𝛽 = 𝑍(𝑡)𝑇 𝛾+𝜖(𝑡), where we abuse notation
y absorbing intercept 𝛼 into 𝛽 and letting the first entry of vector 𝑋𝑖𝑗 to be 1. Once we get 𝛽, the estimation of 𝛾 can proceed as
n asynchronous regression problem with residual 𝑌 (𝑡) −𝑋(𝑡)𝑇 𝛽 as the new response.

We next present asymptotic properties of �̂�. Denote 𝜎2(𝑡) = Var{𝜖(𝑡)} and let 𝛾0 be the true regression coefficient. We need the
ollowing conditions.

(C8) 𝜂(𝑡, 𝑠) is twice continuously differentiable for (𝑡, 𝑠) ∈ [0, 1]⊗2. Moreover, For 𝑡1 ≠ 𝑡2, 𝑠1 ≠ 𝑠2, 𝑃 {𝑑𝑁(𝑡1, 𝑠1) = 1 ∣
(𝑡2, 𝑠2) − 𝑁(𝑡2−, 𝑠2−) = 1} = 𝑓 (𝑡1, 𝑡2, 𝑠1, 𝑠2)𝑑𝑡1𝑑𝑠1, where 𝑓 (𝑡1, 𝑡2, 𝑠1, 𝑠2) is continuous for 𝑡1 ≠ 𝑡2, 𝑠1 ≠ 𝑠2, and 𝑓{𝑡1±, 𝑡2±, 𝑠1±, 𝑠2±}

xists.
(C9) 𝐸{𝑍(𝑡)𝑍(𝑠)𝑇 } is twice continuously differentiable for (𝑡, 𝑠) ∈ [0, 1]. In addition,
∫ 𝐸{𝑍(𝑠)𝑍(𝑠)𝑇 }𝜂(𝑠, 𝑠)𝑑𝑠 is positive definite and

‖∫ 𝐸{𝑍(𝑠)𝑍(𝑠)𝑇 }𝜂(𝑠, 𝑠)𝜎2(𝑠)𝑑𝑠‖∞ < ∞,

here for a square matrix 𝐴, ‖𝐴‖∞ = max1≤𝑖≤𝑛
∑𝑛

𝑗=1 |𝑎𝑖𝑗 |.
5
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(C10) 𝑛ℎ → ∞ and 𝑛ℎ → 0.
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The reason we impose 𝑛ℎ5 → 0 is to eliminate bias. The bias is of order 𝑂(ℎ2). We require the kernel function 𝐾(⋅) to be a
ymmetric density function satisfying ∫ 𝑧𝐾(𝑧)𝑑𝑧 = 0. In the proof, the estimating equation includes the 𝐾ℎ(𝑡 − 𝑠) term. After a
hange of variable, the first order term involving ℎ is multiplied by 𝑧𝐾(𝑧) in the integration, which vanishes.

The following theorem states the asymptotic properties of �̂�.

heorem 4. Under (C3)–(C5), (C7)–(C10), the asymptotic distribution of �̂� satisfies
√

𝑛ℎ(�̂� − 𝛾0)
𝑑
→ 𝑁(0, 𝐴−1

𝛾0
𝛴𝐴−1

𝛾0
), (3.16)

where

𝐴𝛾0 = ∫ 𝐸
{

𝑍(𝑠)𝑍(𝑠)𝑇
}

𝜂(𝑠, 𝑠)𝑑𝑠 and

𝛴 = ∫ 𝐾(𝑧)2𝑑𝑧∫ 𝐸
{

𝑍(𝑠)𝑍(𝑠)𝑇
}

𝜂(𝑠, 𝑠)𝜎2(𝑠)𝑑𝑠.

The asymptotic distribution of �̂� is the same as that in Cao et al. (2015) with the identity link function. As �̂� has
√

𝑛ℎ rate of
convergence, slower than the

√

𝑛 rate of convergence of 𝛽, plugging in 𝛽𝑝 or 𝛽𝑐 does not affect the limiting distribution of �̂�, which
orroborates the validity of the proposed two-step method. That is, estimating 𝛾 is as efficient as if 𝛽 were known a priori. The
ariance of �̂� can be estimated from the sandwich formula

V̂ar(�̂�) =
{ 𝑛

∑

𝑖=1
∬ 𝐾ℎ(𝑡 − 𝑠)𝑍𝑖(𝑠)𝑍𝑖(𝑠)𝑇 𝑑𝑁𝑖(𝑡, 𝑠)

}−1

𝑛
∑

𝑖=1

[

∬ 𝐾ℎ(𝑡 − 𝑠)𝑍𝑖(𝑠){𝑌𝑖(𝑡) −𝑍𝑖(𝑠)𝑇 �̂� −𝑋𝑖(𝑡)𝑇 𝛽}𝑑𝑁𝑖(𝑡, 𝑠)
]⊗2

{ 𝑛
∑

𝑖=1
∬ 𝐾ℎ(𝑡 − 𝑠)𝑍𝑖(𝑠)𝑍𝑖(𝑠)𝑇 𝑑𝑁𝑖(𝑡, 𝑠)

}−1

.

3.2. Simultaneous estimation of synchronous and asynchronous longitudinal covariates

For the mixed synchronous and asynchronous longitudinal covariates, the natural idea is to use estimating equations to get
estimators of 𝛽 and 𝛾 simultaneously, similar to Cao et al. (2015). Denote 𝑊 (𝑡, 𝑠) = {𝑋(𝑡)𝑇 , 𝑍(𝑠)𝑇 }𝑇 . We use the estimating equation

𝑈𝑤(𝛽, 𝛾)

= 𝑛−1
𝑛
∑

𝑖=1
∬ 𝐾ℎ(𝑡 − 𝑠)𝑊𝑖(𝑡, 𝑠){𝑌𝑖(𝑡) −𝑍𝑖(𝑠)𝑇 𝛾 −𝑋𝑖(𝑡)𝑇 𝛽}𝑑𝑁𝑖(𝑡, 𝑠) (3.17)

to get 𝛽𝑤 and �̂�𝑤, respectively. In Cao et al. (2015), they studied the case that all longitudinal covariates are observed at the same
times, which are asynchronous with the longitudinal response. In this section, we look at the scenario where some longitudinal
covariates are synchronous with the longitudinal response, and some longitudinal covariates are asynchronous with the longitudinal
response. As shown in Theorem 5, the resulting estimators are asymptotically unbiased. However, the convergence rate of the
obtained estimator of 𝛽 is slower than the parametric

√

𝑛 rate, as obtained through the partial linear model or centering approach.
The rationale is that unnecessary smoothing on 𝑋(𝑡) makes the corresponding estimator less efficient. This is further demonstrated
in the simulation studies. We need the following assumption.

(C11) E{𝑊 (𝑡, 𝑠)𝑊 (𝑡, 𝑠)𝑇 } ∈ R(𝑝+𝑞)×(𝑝+𝑞) is twice continuously differentiable for (𝑡, 𝑠) ∈ [0, 1] where 𝑊 (𝑡, 𝑠) = {𝑋(𝑡)𝑇 , 𝑍(𝑠)𝑇 }𝑇

E{𝑊 (𝑡, 𝑡)𝑊 (𝑡, 𝑡)𝑇 }𝜂(𝑡, 𝑡) d𝑡 is positive definite and

‖∫ E{𝑊 (𝑡, 𝑡)𝑊 (𝑡, 𝑡)𝑇 }𝜎2(𝑡)𝜂(𝑡, 𝑡) d𝑡‖∞ < ∞ ∀𝑡,

here for a square matrix 𝐴, ‖𝐴‖∞ = max1≤𝑖≤𝑛
∑𝑛

𝑗=1 |𝑎𝑖𝑗 |.

heorem 5. Under conditions (C8), (C10) and (C11), let �̂�𝑤 = (𝛽𝑇𝑤 , �̂�
𝑇
𝑤)

𝑇 and 𝜃0 = (𝛽𝑇0 , 𝛾
𝑇
0 )

𝑇 , the asymptotic distributions of �̂�𝑤 satisfies
√

𝑛ℎ(�̂�𝑤 − 𝜃0)
𝑑
→ 𝑁(0, 𝐴−1

𝜃0
𝛴𝜃0𝐴

−1
𝜃0
),

where

𝐴𝜃0 = ∫ E{𝑊 (𝑡, 𝑡)𝑊 (𝑡, 𝑡)𝑇 }𝜂(𝑡, 𝑡) d𝑡 and

𝛴𝜃0 = ∫ 𝐾(𝑧)2 d𝑧∫ E{𝑊 (𝑡, 𝑡)𝑊 (𝑡, 𝑡)𝑇 }𝜎2(𝑡)𝜂(𝑡, 𝑡) d𝑡.

The sandwich formula can estimate the asymptotic covariance matrix

V̂ar(�̂� )
8

𝑤
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Fig. 3. Typical squared prediction error against bandwidth for 𝑛 = 100, 𝐸{𝑍(𝑡)} = 2 sin(2𝜋𝑡), with bandwidth ranging from 𝑛−0.8 to 𝑛−0.6.

=

{ 𝑛
∑

𝑖=1
∬ 𝐾ℎ(𝑡 − 𝑠)𝑊𝑖(𝑡, 𝑠)𝑊𝑖(𝑡, 𝑠)𝑇 𝑑𝑁𝑖(𝑡, 𝑠)

}−1

𝑛
∑

𝑖=1

[

∬ 𝐾ℎ(𝑡 − 𝑠)𝑊𝑖(𝑡, 𝑠){𝑌𝑖(𝑡) −𝑍𝑖(𝑠)𝑇 �̂� −𝑋𝑖(𝑡)𝑇 𝛽}𝑑𝑁𝑖(𝑡, 𝑠)
]⊗2

{ 𝑛
∑

𝑖=1
∬ 𝐾ℎ(𝑡 − 𝑠)𝑊𝑖(𝑡, 𝑠)𝑊𝑖(𝑡, 𝑠)𝑇 𝑑𝑁𝑖(𝑡, 𝑠)

}−1

.

It is worth noting that Theorem 5 requires a weaker condition on the relationship between 𝑋(𝑡) and 𝑍(𝑡) than the two-step
pproach. For the latter to work, we need the key assumption specified in (𝐶2∗). This reflects the trade-off between robustness and
fficiency.

.3. Bandwidth selection

Our approach to estimating 𝛾 depends on the bandwidth selection. In synchronous longitudinal data, cross-validation is usually
sed to select the optimal bandwidth by minimizing the squared prediction error. However, in asynchronous longitudinal data,
ince observations are mismatched, prediction errors are not well defined. Cao et al. (2015) proposes to minimize the mean squared
rror by calculating bias and variance separately. First, based on the asymptotic result, bias is in the same order as the bandwidth
quare. One can regress the squared bandwidth with the estimated regression coefficient to obtain the slope estimate. The bias
s approximated by multiplying the slope estimate and the squared bandwidth. Second, the data are split into two halves, and
oefficient estimates are obtained for each half. The squared difference of the two coefficient estimates divided by 4 approximates
he variance. The mean squared error is squared bias plus variance, and the optimal bandwidth is chosen to be the one that minimizes
he mean squared error. This method is somewhat ad hoc since only two folds of data are used, and the squared difference is coarse
nd may be an imprecise estimate of the variance.

We propose a new kernel-smoothed cross-validation to select the optimal bandwidth within a certain range. First, we split the
ata into several folds and estimated the regression coefficient without one fold. In computing the prediction error, we use kernel
moothing to deal with the mismatched response and covariate. Specifically, suppose 𝛽(−𝑘) and �̂� (−𝑘) are estimates without the 𝑘th
old. The squared prediction error for the 𝑘th fold is computed as

∑𝑛(𝑘)
𝑖=1 ∬ 𝐾ℎ(𝑡 − 𝑠){𝑌𝑖(𝑡) −𝑋𝑖(𝑡)𝑇 𝛽(−𝑘) −𝑍𝑖(𝑠)𝑇 �̂� (−𝑘)}2𝑑𝑁𝑖(𝑡, 𝑠)

∑𝑛(𝑘)
𝑖=1 ∬ 𝐾ℎ(𝑡 − 𝑠)𝑑𝑁𝑖(𝑡, 𝑠)

,

where 𝑛(𝑘) is the number of subjects in the 𝑘th fold. We take the average of the squared prediction errors over all folds and select
the bandwidth with the smallest average squared prediction error. A typical functional relationship between the average squared
9

prediction error and bandwidth is depicted in Fig. 3.
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Table 1
1000 simulation results for inference of 𝛽 with ℎ = 𝑛−0.6.

Naïve PLM Centering

Bias SD SE CP Bias SD SE CP Bias SD SE CP

𝐸{𝑍(𝑡)} = 2

𝑛 = 100 −0.002 0.207 0.189 91 −0.003 0.219 0.196 90 −0.003 0.219 0.196 90
𝑛 = 400 0.003 0.106 0.103 94 0.002 0.112 0.107 93 0.002 0.112 0.107 93
𝑛 = 900 0.002 0.073 0.070 94 0.002 0.076 0.073 93 0.002 0.076 0.073 93

𝐸{𝑍(𝑡)} = 0.5 + 𝑡

𝑛 = 100 −0.053 0.207 0.188 91 0.016 0.220 0.193 90 0.016 0.220 0.193 90
𝑛 = 400 −0.067 0.106 0.104 89 −0.002 0.111 0.108 94 −0.002 0.111 0.108 94
𝑛 = 900 −0.059 0.073 0.070 85 0.005 0.076 0.073 94 0.005 0.076 0.073 94

𝐸{𝑍(𝑡)} = 0.5 + 𝑡2

𝑛 = 100 −0.060 0.217 0.190 90 0.003 0.227 0.196 90 0.003 0.227 0.196 90
𝑛 = 400 −0.064 0.107 0.103 89 −0.003 0.113 0.107 93 −0.003 0.113 0.107 94
𝑛 = 900 −0.062 0.071 0.071 86 −0.002 0.074 0.074 94 −0.002 0.074 0.074 94

𝐸{𝑍(𝑡)} = 2sin(2𝜋𝑡)

𝑛 = 100 0.237 0.226 0.204 74 −0.002 0.225 0.194 90 −0.002 0.225 0.195 90
𝑛 = 400 0.233 0.118 0.111 46 0.001 0.115 0.108 93 0.001 0.115 0.108 93
𝑛 = 900 0.231 0.079 0.076 17 0.002 0.076 0.074 94 0.002 0.076 0.074 94

Note: ‘‘Bias’’ is the empirical bias, ‘‘SD’’ is the sample standard deviation, ‘‘SE’’ is the average of the standard error estimates, ‘‘CP’’∕100 represents the coverage
probability of the 95% confidence interval of 𝛽. Naïve denotes the naive method, PLM denotes the partial linear model-based method and Centering denotes the
entering method.

. Numerical studies

In this section, we investigate the finite sample performance of the proposed estimators through Monte Carlo simulations.

.1. Omitted longitudinal covariate

We first examine the performance of 𝛽𝑝 and 𝛽𝑐 along with the naïve estimator 𝛽𝑛 when some important covariates are omitted.
he model we use to generate data is

𝑌 (𝑡) = 𝛼 +𝑋(𝑡)𝑇 𝛽 +𝑍(𝑡)𝑇 𝛾 + 𝜖(𝑡),

where 𝛼 = 1, 𝛽 = 2 and 𝛾 = −1. We generate 1000 datasets, each consisting of 𝑛 = 100, 400, or 900 subjects. Bandwidth is fixed at
𝑛−0.6; other bandwidths yield similar results which are relegated in the Supplementary Material. The number of observations for
each subject is Poisson(5)+1, and the observation times are generated from the uniform distribution  (0, 1). The covariate processes
𝑋(𝑡), 𝑍(𝑡) and the error process 𝜖(𝑡) are generated in the following manner:

1. Generate a Gaussian process 𝜈(𝑡) with mean 0 and Cov{𝜈(𝑡), 𝜈(𝑠)} = 𝑒−|𝑡−𝑠|;
2. 𝑍(𝑡) = 𝑍′(𝑡) + 𝜈(𝑡), where 𝐸{𝑍′(𝑡)} = 0.5 + 𝑡, 0.5 + 𝑡2, 0.5 +

√

𝑡 or 𝐸{𝑍′(𝑡)} = 2 and Cov{𝑍′(𝑡), 𝑍′(𝑠)} = 𝑒−|𝑡−𝑠|;
3. 𝑋(𝑡) = 𝑋′(𝑡) + 𝜔𝜈(𝑡), where 𝜔 ∼ 𝑁(0, 1), independent of 𝜈(𝑡), 𝐸{𝑋′(𝑡)} =

√

𝑡, and Cov{𝑋′(𝑡), 𝑋′(𝑠)} = 𝑒−|𝑡−𝑠|;
4. 𝜖(𝑡) = 𝜏𝜈(𝑡), where 𝜏 ∼ 𝑁(0, 1), independent of 𝜈(𝑡).

We observe from Table 1 that when 𝐸{𝑍(𝑡)} = 2, the naïve estimator 𝛽𝑛 performs reasonably well. For all other time-varying
{𝑍(𝑡)}, there is evidence of substantial bias and poor coverage probabilities for the true 𝛽. The partial linear model (PLM) based
stimator 𝛽𝑝 and centering (Centering) approach based estimator 𝛽𝑐 have almost identical performance with

√

𝑛 rate of convergence.
As the sample size increases, the empirical and model-based standard errors tend to agree, and the coverage is close to the nominal
95% level. The performance improves with larger sample sizes.

4.2. Asynchronous longitudinal covariate

We next study coefficient estimation when 𝑍(𝑡) is mismatched with 𝑋(𝑡) and 𝑌 (𝑡). The simulation setup is the same as that in
Section 4.1 except that 𝑋(𝑡), 𝑍(𝑡) and the error process 𝜖(𝑡) are generated as follows. The covariate process 𝑋(𝑡) and 𝑍(𝑡) are both

aussian, with 𝐸{𝑋(𝑡)} =
√

𝑡,Cov{𝑋(𝑡), 𝑋(𝑠)} = Cov{𝑍(𝑡), 𝑍(𝑠)} = 𝑒−|𝑡−𝑠| and 𝐸{𝑍(𝑡)} = 0.5 + 𝑡, 0.5 + 𝑡2, 2sin(2𝜋𝑡) or 𝐸{𝑍(𝑡)} = 2.
The error process 𝜖(𝑡) is Gaussian with 𝐸{𝜖(𝑡)} = 0 and Cov{𝜖(𝑡), 𝜖(𝑠)} = 2−|𝑡−𝑠|. 𝑋(𝑡), 𝑍(𝑡) and 𝜖(𝑡) are independently generated.

s estimators based on partial linear model approach and centering approach have the same asymptotic distribution, we illustrate
he two-step method with the centering approach, denoted as Centering + KS in Table 2. For comparison, we implement three
10

lternative estimation procedures.
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Table 2
1000 simulation results for 𝛽, 𝛾 and 𝛼.

𝑛 LVCF Centering+LVCF Centering+KS KS

Bias SD SE CP Bias SD SE CP Bias SD SE CP Bias SD SE CP

𝐸{𝑍(𝑡)} = 2

𝛽 100 0.002 0.099 0.091 92 −0.005 0.130 0.116 91 −0.005 0.130 0.116 91 0.001 0.124 0.113 93
400 0.0004 0.049 0.047 94 −0.008 0.064 0.059 93 −0.008 0.064 0.059 93 0.001 0.082 0.081 94
900 −0.002 0.032 0.031 94 −0.008 0.040 0.040 94 −0.008 0.040 0.040 94 −0.001 0.072 0.069 93

𝛾 100 0.121 0.102 0.095 74 0.128 0.102 0.095 72 0.023 0.129 0.122 91 0.016 0.129 0.116 91
400 0.118 0.051 0.049 34 0.120 0.051 0.049 33 0.006 0.084 0.085 94 0.004 0.084 0.083 95
900 0.118 0.032 0.033 5 0.119 0.032 0.033 5 0.0002 0.071 0.072 95 −0.0005 0.071 0.072 95

𝛼 100 −0.245 0.242 0.226 80 −0.254 0.249 0.217 76 −0.043 0.308 0.286 91 −0.032 0.305 0.273 91
400 −0.240 0.121 0.116 47 −0.237 0.125 0.112 46 −0.006 0.193 0.194 94 −0.008 0.197 0.194 96
900 −0.236 0.079 0.078 14 −0.234 0.081 0.075 13 0.002 0.161 0.163 94 −0.001 0.166 0.167 95

𝐸{𝑍(𝑡)} = 0.5 + 𝑡

𝛽 100 −0.011 0.093 0.091 94 −0.003 0.120 0.114 92 −0.003 0.120 0.114 92 −0.002 0.122 0.113 92
400 −0.011 0.046 0.047 95 −0.001 0.060 0.059 94 −0.001 0.060 0.059 94 −0.001 0.085 0.082 93
900 −0.010 0.031 0.032 94 −0.001 0.040 0.039 94 −0.001 0.040 0.039 94 −0.003 0.069 0.070 95

𝛾 100 0.114 0.095 0.092 74 0.120 0.095 0.092 72 0.008 0.120 0.117 91 0.002 0.119 0.112 91
400 0.119 0.047 0.047 30 0.120 0.047 0.047 28 0.004 0.082 0.081 94 0.002 0.082 0.080 95
900 0.119 0.031 0.032 2 0.119 0.031 0.031 3 0.003 0.068 0.069 94 0.003 0.069 0.069 95

𝛼 100 −0.230 0.150 0.148 64 −0.243 0.156 0.136 56 −0.010 0.186 0.187 94 −0.004 0.189 0.180 93
400 −0.236 0.078 0.076 13 −0.244 0.083 0.069 9 −0.001 0.126 0.124 94 0.000 0.131 0.128 95
900 −0.234 0.051 0.051 0 −0.241 0.054 0.047 0 0.000 0.102 0.104 94 0.002 0.107 0.109 96

𝐸{𝑍(𝑡)} = 0.5 + 𝑡2

𝛽 100 −0.021 0.094 0.091 93 −0.003 0.125 0.115 93 −0.003 0.125 0.115 93 −0.005 0.125 0.112 92
400 −0.021 0.047 0.047 93 −0.001 0.059 0.059 95 −0.001 0.059 0.059 95 −0.001 0.083 0.081 94
900 −0.018 0.032 0.032 91 0.003 0.040 0.040 95 0.003 0.040 0.040 95 0.003 0.071 0.069 95

𝛾 100 0.109 0.091 0.091 77 0.115 0.090 0.091 75 0.018 0.119 0.114 92 0.011 0.120 0.110 93
400 0.112 0.048 0.047 33 0.113 0.048 0.047 33 0.009 0.085 0.080 92 0.008 0.085 0.079 92
900 0.109 0.033 0.032 7 0.109 0.033 0.032 7 0.000 0.070 0.068 94 −0.001 0.070 0.068 94

𝛼 100 −0.202 0.143 0.140 68 −0.219 0.153 0.126 56 −0.013 0.185 0.175 91 −0.006 0.189 0.169 92
400 −0.203 0.072 0.072 20 −0.218 0.075 0.064 12 −0.008 0.119 0.114 93 −0.007 0.123 0.119 93
900 −0.201 0.049 0.048 1 −0.216 0.051 0.043 0 −0.001 0.098 0.095 93 −0.000 0.104 0.102 94

𝐸{𝑍(𝑡)} = 2 sin(2𝜋𝑡)

𝛽 100 0.087 0.111 0.111 86 0.010 0.121 0.116 94 0.010 0.121 0.116 94 0.004 0.123 0.114 93
400 0.082 0.059 0.056 69 0.008 0.061 0.059 94 0.008 0.061 0.059 94 −0.001 0.086 0.082 93
900 0.084 0.038 0.038 40 0.009 0.043 0.040 92 0.009 0.043 0.040 93 0.001 0.073 0.070 94

𝛾 100 0.257 0.059 0.056 1 0.255 0.059 0.055 1 0.009 0.064 0.061 91 0.006 0.065 0.061 93
400 0.257 0.028 0.029 0 0.253 0.028 0.028 0 0.003 0.046 0.046 93 0.002 0.047 0.046 95
900 0.257 0.019 0.019 0 0.253 0.019 0.019 0 0.001 0.041 0.040 93 −0.0003 0.041 0.040 94

𝛼 100 0.279 0.154 0.143 50 0.336 0.157 0.119 25 −0.011 0.157 0.150 92 −0.006 0.158 0.147 93
400 0.282 0.077 0.073 3 0.336 0.078 0.060 0 −0.008 0.097 0.095 93 −0.001 0.104 0.102 94
900 0.282 0.049 0.049 0 0.338 0.050 0.040 0 −0.005 0.080 0.078 93 0.0003 0.088 0.087 94

Note: ‘‘Bias’’ is the empirical bias, ‘‘SD’’ is the sample standard deviation, ‘‘SE’’ is the average of the standard error estimates, ‘‘CP’’∕100 represents the coverage
probability of the 95% confidence interval for 𝛽, �̂�, and �̂�, respectively. LVCF denotes the last value carried forward method, Centering+LVCF denotes the two-step
pproach with the centering method in the first step and LVCF in the second step, Centering+KS denotes the two-step approach with the centering method in
he first step and the kernel smoothing method in the second step, and KS denotes the one step kernel weighting approach.

1. Apply the last value carried forward (LVCF) to estimate 𝛽 and 𝛾 simultaneously. In longitudinal studies, a naïve approach to
analyzing asynchronous longitudinal data is the last value carried forward method. If data at a certain time point are missing,
the observation at the most recent time point in the past is used in the analysis for synchronous data. This method is referred
to as LVCF in Table 2. Specifically, for 𝑖th subject, at time 𝑡𝑖𝑗 , if the covariate process 𝑍𝑖(⋅) does not have any observation,
then the most recently observed 𝑍𝑖(𝑠) is used, where 𝑠 = max{𝑥 ≤ 𝑡𝑖𝑗 , 𝑥 ∈ {𝑠𝑖1,… , 𝑠𝑖𝑀𝑖

}}. After this imputation, we proceed
with the usual least square estimation procedure.

2. Apply the two-step approach, but use LVCF to estimate 𝛾 in the second step. Specifically, for 𝑖th subject, in the first
stage, obtain the longitudinal residual, �̂�𝑖(𝑡𝑖𝑗 ) = 𝑌𝑖(𝑡𝑖𝑗 ) − 𝑋𝑖(𝑡𝑖𝑗 )𝑇 𝛽𝑐 . In the second stage, regress �̂�𝑖(𝑡𝑖𝑗 ) with 𝑍𝑖(𝑠), where
𝑠 = max{𝑥 ≤ 𝑡𝑖𝑗 , 𝑥 ∈ {𝑠𝑖1,… , 𝑠𝑖𝑀𝑖

}}. This method is referred to as Centering + LVCF in Table 2.
3. Solve the estimating Eq. (3.17) to obtain estimators of 𝛽 and 𝛾 simultaneously. The estimation of 𝛾 is similar to the proposed

two-step approach, yet the estimation of 𝛽 is less efficient than the proposed two-step approach. This method is referred as
KS in Table 2.
11
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Table 3
Simulation results of 𝛽1 based on 1000 replications with ℎ = 𝑛−0.6.

n PLM Centering

Bias SD SE CP Bias SD SE CP

𝐸{𝑋2(𝑡)} = 0.5 + 𝑡

100 −0.003 0.121 0.116 93 −0.003 0.121 0.116 93
400 −0.007 0.060 0.060 95 −0.007 0.060 0.060 95
900 −0.004 0.040 0.040 95 −0.004 0.040 0.040 95

𝐸{𝑋2(𝑡)} = 0.5 + 𝑡2

100 −0.010 0.125 0.117 92 −0.010 0.125 0.117 93
400 −0.004 0.061 0.060 95 −0.004 0.061 0.060 95
900 −0.005 0.041 0.040 94 −0.005 0.041 0.040 94

𝐸{𝑋2(𝑡)} = 2𝑠𝑖𝑛(2𝜋𝑡)

100 −0.011 0.122 0.116 93 −0.011 0.122 0.116 93
400 −0.007 0.061 0.060 95 −0.007 0.061 0.060 95
900 −0.007 0.042 0.040 93 −0.007 0.042 0.040 93

Note: ‘‘Bias’’ is the empirical bias, ‘‘SD’’ is the sample standard deviation, ‘‘SE’’ is the average of the standard
error estimates, ‘‘CP’’∕100 represents the coverage probability of the 95% confidence interval of 𝛽1 . PLM denotes
the partial linear model-based method and Centering denotes the centering method.

Automatic bandwidth selection procedure proposed in Section 3.3 is used where the bandwidths are selected in the range
𝑛−0.8, 𝑛−0.6).

We summarize simulation results in Table 2. For estimation of 𝛽, when 𝐸{𝑍(𝑡)} = 2, all methods perform satisfactorily as
ssumptions for LVCF are satisfied in this case. When 𝐸{𝑍(𝑡)} is non-constant, the performance of LVCF and Centering + LVCF
eteriorates and Centering + KS and KS both produce valid results. As our theory predicts, Centering + KS is more efficient than
S for estimation of 𝛽, which is reflected on the smaller variance. For estimation of 𝛾 and 𝛼, both LVCF and Centering + LVCF are
iased while Centering + KS and KS produce similar results.

.3. Correlated longitudinal covariates

In this section, we conduct simulation studies under the relaxed condition (𝐶2∗) with the general approach proposed in
ection 2.4. The model we use to generate data is

𝑌 (𝑡) = 𝛼0 +𝑋1(𝑡)𝛽1 +𝑋2(𝑡)𝛽2 +𝑍(𝑡)𝛾0 + 𝜖(𝑡), (4.18)

here 𝛼0 = 1, 𝛽1 = 𝛽2 = 2 and 𝛾0 = −1. We generate 1000 datasets, each consisting of 𝑛 = 100, 400 or 900 subjects. Bandwidth is
ixed at 𝑛−0.6. Other specifications are as follows.

1. Generate a Gaussian processes 𝑋2(𝑡) with mean 0.5 + 𝑡, 0.5 + 𝑡2, or 2𝑠𝑖𝑛(2𝜋𝑡) and Cov{𝑋2(𝑡), 𝑋2(𝑠)} = 𝑒−|𝑡−𝑠|.
2. Generate independent Gaussian processes 𝜈1(𝑡) and 𝜈2(𝑡), with 𝐸{𝜈1(𝑡)} =

√

𝑡, 𝐸{𝜈2(𝑡)} = 𝑡, and

Cov{𝜈1(𝑡), 𝜈1(𝑠)} = Cov{𝜈2(𝑡), 𝜈2(𝑠)} = 𝑒−|𝑡−𝑠|.

3. The observed covariate processes are constructed as: 𝑋1(𝑡) = 𝑋2(𝑡) + 𝜈1(𝑡) and 𝑍(𝑡) = 𝑋2(𝑡) + 𝜈2(𝑡).
4. Generate a Gaussian process 𝜖(𝑡) with mean zero and

Cov{𝜖(𝑡), 𝜖(𝑠)} = 2−|𝑡−𝑠|.

he simulation results are summarized in Table 3. We observe that the partial linear model-based and centering-based methods have
lmost identical performance. The estimators for 𝛽1 are unbiased. The empirical and model-based standard errors tend to agree, and
he coverage probabilities are close to the nominal 95% level. The performance improves with larger sample sizes.

. Application to the ADNI data

In this section, we illustrate the proposed method of analyzing mixed synchronous and asynchronous longitudinally observed
unctional data on a study of Alzheimer’s disease. In the dataset, 256 subjects were followed for 5 years. The dataset is collected
rom ADNI GO and ADNI2 in the ADNI study. Among many goals of the ADNI study, we are interested in clinical, functional
euroimaging, and structural variables that affect the progression of mild cognitive impairment and early Alzheimer’s disease. The
esponse variable MMSE ranges from 0 to 30, measuring global cognitive performance, where larger values mean a better cognitive
tate. It is examined from 1 to 7 time points. Baseline covariates include age, years of education, whether the person has a mild
ognitive impairment (MCI), whether the person has early Alzheimer’s disease (AD), the number of APOE4 gene copies, and the
og hazard function of fractional anisotropy (FA) at grid point 0.65. The FA is one of the most popular diffusion-weighted imaging
12

easures that reflects fiber density and myelination in white matter, observed at 1 to 8 time points. Details of the data processing
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Table 4
Regression of FA on six covariates.

Age Education MCI AD APOE4(1) APOE4(2)

Fit separately

Estimate 0.006 0.003 0.057 −0.020 −0.006 −0.070
𝑝-value 0.067 0.634 0.120 0.601 0.875 0.286

All in one model

Estimate 0.005 0.004 0.075 0.026 −0.013 −0.067
𝑝-value 0.098 0.520 0.101 0.623 0.766 0.326

Table 5
Analysis of dataset from ADNI.

Naïve LVCF Centering+LVCF Centering+KS Cao et al. (2015)

Estimate 𝑝-value Estimate 𝑝-value Estimate 𝑝-value Estimate 𝑝-value Estimate 𝑝-value

Age −0.199 0.258 −0.241 0.199 −0.280 0.728 −0.280 0.728 −0.176 0.320
Edu 0.117 0.001 0.111 0.011 0.116 0.000 0.116 0.000 0.106 0.001
MCI −0.393 0.000 −0.427 0.000 −0.422 0.000 −0.422 0.000 −0.352 0.000
AD −1.779 0.000 −1.764 0.000 −1.858 0.000 −1.858 0.000 −1.742 0.000
AP4(1) −0.329 0.000 −0.328 0.000 −0.305 0.000 −0.305 0.000 −0.273 0.000
AP4(2) −0.391 0.022 −0.366 0.036 −0.415 0.017 −0.415 0.017 −0.296 0.039
FA (omitted) 0.047 0.225 0.044 0.248 0.061 0.047 0.058 0.062

Note: ‘‘AP4(1)’’ is APOE4(1), and ‘‘AP4(2)’’ is APOE4(2).

are given in Li et al. (2022). The measurement time points of the log hazard functions of FA and the MMSE scores are different
between and within subjects. In contrast, baseline measurements align with the MMSE score, giving rise to mixed synchronous and
asynchronous longitudinal covariates.

We use model (2.1) to fit the data. Our modeling assumes that the asynchronous longitudinal covariate FA is not correlated with
aseline covariates. To better understand this, we regress FA against age, years of education, MCI, AD, APOE4(1), and APOE(2),
irst in six univariate regression models and then in one multiple regression model. The results are summarized in Table 4. The
-values are computed based on the two-sided test. We observe that none of the six baseline covariates are statistically significantly
ssociated with FA. Consequently, we include them all in our model.

We fit model (2.1) with bandwidth chosen in the range (2(𝑄3 − 𝑄1)𝑛−0.7, 2(𝑄3 − 𝑄1)𝑛−0.6), where 𝑄3 and 𝑄1 are third and first
quantiles of the combined observation times of MMSE and FA, 𝑛 = 256 is number of patients after eliminating missing data (Little and
Rubin, 2014). We implemented five methods: Naïve, LVCF, Centering + LVCF, Centering + KS, and KS. The naïve method ignores FA
in fitting the linear regression model. In the two-step approach, regression coefficients of age, education, MCI, AD, APOE4(1), and
APOE4(2) are estimated in the first step using the centering approach. The regression coefficient of FA is estimated in the second
step using either LVCF (Centering + LVCF) or kernel smoothing (Centering + KS). LVCF and KS estimate all regression coefficients
simultaneously. We normalize continuous variables, including MMSE, age, education, and HA. Analysis results are summarized in
Table 5.

There is no statistically significant association between age and MMSE across all methods. As education, MCI, AD, APOE(1), and
APOE(2) are baseline covariates, their parameter estimates are similar across different methods, and all show statistical significance.
The estimation results show that MCI at baseline, AD at baseline, APOE4(1), and APOE4(2) have significant negative effects on
MMSE. In contrast, education plays a positive role, which has been verified in the literature (Bekris et al., 2010). For misaligned FA,
LVCF and Centering + LVCF do not show statistical significance. However, the newly proposed Centering + KS shows a statistically
significant positive effect. This finding is consistent with the existing literature that lower FA values, which means less white matter,
are associated with lower MMSE scores (Kristensen et al., 2019).

6. Concluding remarks

In this paper, we propose valid statistical approaches for analyzing longitudinal data with omitted longitudinal covariates.
Furthermore, to deal with mixed synchronous and asynchronous longitudinal covariates, we propose a two-step approach for
analysis. In the first step, a partial linear model or a centering approach is used to estimate the regression coefficient of the
synchronous longitudinal covariate. In the second step, we regress the asynchronous longitudinal covariate with longitudinal residual
from the first step through kernel weighting to obtain regression coefficient estimation of the asynchronous longitudinal covariate.
We obtain parametric root 𝑛 rate of convergence for regression coefficient estimation of the synchronous longitudinal covariate and
𝑛2∕5 rate of convergence for regression coefficient estimation of the asynchronous longitudinal covariate. In terms of implementation,
the centering approach is computationally faster, while the partial linear model approach can suggest possible forms of the omitted
longitudinal covariate. We require the unconfoundedness assumption specified in (𝐶2∗) on the covariates, which is plausible in
randomized clinical trials. In observational studies, this assumption is very unlikely to hold. We suggest modeling the synchronous
13

and asynchronous longitudinal covariates jointly, as presented in Section 3.2, to get unbiased regression coefficient estimation.



Journal of Statistical Planning and Inference 231 (2024) 106135Z. Sun et al.

i
a
s
i

A

w
t
i
i
c

A

M

R

B

B
C
C
C
D
F

F
K

L
L
L
L
L
L
N
P

Q
S

S

W
X

Per the request of a referee, for sensitivity analysis, we conducted simulation studies under the same set-up of Section 4.3 where
condition (C2) is not satisfied and implemented the strategy of Section 2.3. The results are relegated in the Supplementary Material.

We use a working independence covariance matrix for analysis. Pepe and Anderson (1994) pointed out that a working
ndependence covariance matrix is a safe choice to get an unbiased estimation of the regression coefficient in longitudinal data
nalysis with time-varying covariates. A carefully chosen working covariance matrix can lead to efficiency gain compared to the
imple independent covariance matrix. A fully efficient estimator requires a correctly specified working covariance matrix, which
s difficult in practice. This is similar in spirit to using ordinary least squares in the presence of heteroscedasticity in linear models.
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